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Abstract

Gabor filters have been successfully applied to a broad range of image processing tasks. The present
paper considers the design of a single filter to segment a two-texture image. A new efficient algorithm for
Gabor-filter design is presented, along with methods for estimating filter output statistics. The algorithm
draws upon previous results that showed that the output of a Gabor-filtered texture is modeled well by a
Rician distribution. A measure of the total output power is used to select the center frequency of the filter
and is used to estimate the Rician statistics of the Gabor-filtered image. The method is further generalized
to include the statistics of postfiltered outputs that are generated by a Gaussian filtering operation following
the Gabor filter. The new method typically requires an order of magnitude less computation to design a
filter than a previously proposed method. Experimental results demonstrate the efficacy of the method.

Image segmentation Texture Gabor filters Rician statistics Texture segmentation Image statistics
Texture analysis

1. INTRODUCTION

1Gabor filters have been successfully applied to many image-processing applications, such as texture
segmentation,(1–8) document analysis,(9) edge detection,(10) retina identification,(11) fingerprint processing,(12)

image coding,(13,14) and image representation.(15) An advantage of these filters is that they satisfy the min-
imum space-bandwidth product per the uncertainty principle. Hence, they provide simultaneous optimal
resolution in both the space and spatial-frequency domains.(16) Further, they are bandpass filters, conform-
ing well to mammalian visual receptive field profiles.(1,2,16) Generally speaking, people use Gabor filters
when trying to solve problems involving complicated images comprised of textured regions. We consider the
problem of segmenting textured images in this paper. ( For a more complete review on the research issues
in Gabor filter design for texture segmentation, consult Dunn et al.(6,7))

A central issue in applying these filters to texture segmentation is the determination of the filter pa-
rameters. Daugman considered a filter-bank wavelet decomposition based on biological vision.(13) A subset
of a similar filter-bank was proposed by Jain and Farrokhnia.(3) One difficulty with this approach is that
the filter parameters are preset and are not necessarily optimal for a particular processing task. Also, some
segmentation tasks may not require a bank of filters or may not tolerate the additional computational bur-
den. Recent work presented an approach that uses one Gabor filter per texture.(1,2) The center frequency of
each filter was selected to correspond to a peak in the texture power spectrum, and filter bandwidths were
determined by the center frequency. Another effort provided a detailed treatment of the optimal design of a
single Gabor filter to segment two textures.(5,7) The method involved an exhaustive search to find the center
frequency, and the image-segmentation error was minimized using measured output statistics and a Rician
statistical model.

This paper further considers the issue of designing a single Gabor filter for discriminating between two
textures (the texture segmentation problem). Although the method we propose is limited to the design of a
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Figure 1: Image processing block diagram.

single Gabor filter to segment two textures, the underlying principles provide an important foundation for
ongoing research to develop more general methods for designing multiple Gabor filters to segment multiple
textures.(17,18) Further, the limitation of the proposed method to two textures does not necessarily rule
out useful applications, since the segmentation of text from pictures in documents has been successfully
approached using texture-segmentation methods.(9,19)

Key features of the new method include a reduction in computational complexity by an order of magni-
tude over the previously proposed approach and a method for estimating the output statistics of the filtered
textures.(5,7) Although computational complexity of the filter design method does not affect all applications,
it does become important when operator-interaction is desired in the design process. The computational
complexity of a single-filter design procedure may become critical when addressing the multi-filter design
problem with the accompanying combinatorial expansion in filter combinations. The new method also places
no restrictions on the textures. Finally, the designed filter is optimal in the sense that it maximizes the ex-
pected ratio of average output energy for the two prefiltered textures.

Part 2 first reviews the assumed image-processing framework. In Part 3, we propose a Gabor-filter de-
sign technique, based on autocorrelation measurements, that is computationally more efficient than previous
methods.(5,7) Then, in Part 4, we provide a method for estimating the pdf of the Gabor filter output using a
Rician model. The estimated pdf’s are used to establish a threshold that minimizes the image-segmentation
error. Further, we consider the use of a Gaussian postfilter in the analysis. The Gaussian postfilter, which
reduces the variance of the Rician-distributed Gabor-filter output, results in reduced image-segmentation
error at the expense of some loss in spatial resolution. To avoid confusion, we will refer to the Gabor filter
as the Gabor prefilter and the subsequent Gaussian filter as the Gaussian postfilter. The results of Part 5
demonstrate that the filter-design algorithm generates effective filters for image segmentation. Moreover, the
results show that our methods accurately predict filter-output statistics. We also discuss the computational
complexity and performance of the method relative to the previous approach.

2. IMAGE PROCESSING OVERVIEW AND PROBLEM STATEMENT

A block diagram of the fundamental image processing under consideration is shown in Fig. 1. The
technique outlined in the figure has been justified for texture segmentation by previous investigators.(1,2,6)

Below, we provide an overview of the image processing in Fig. 1 and define the filter-design problem.
The input image i(x, y) is assumed to be composed of two textures, as will be discussed in Part 3. The

image is first passed through a Gabor prefilter with impulse response h(x, y), where

h(x, y) = g(x, y) e−j2π(Ux+V y)

and

g(x, y) =
1

2πσ2
g

e
− (x2+y2)

2σ2
g . (1)

The Gabor function h(x, y) is a complex sinusoid centered at frequency (U, V ) and modulated by a Gaussian
envelope g(x, y). The spatial extent of the Gaussian envelope is determined by parameter σg. Further, the
2-D Fourier transform of h(x, y) is

H(u, v) = G(u− U, v − V ) (2)
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where

G(u, v) = e−2π2σ2
g(u

2+v2) (3)

is the Fourier transform of g(x, y). The parameters (U, V, σg) determine h(x, y). From (2-3), we see that the
Gabor function is essentially a bandpass filter centered about frequency (U, V ), with bandwidth determined
by σg. We assume for simplicity that the Gaussian envelope g(x, y) is a symmetrical function. Other
treatments have considered the impact of an asymmetrical Gaussian envelope.(6)

The output of the prefilter stage ih(x, y) is the convolution of the input image with the filter response

ih(x, y) = h(x, y) ∗ i(x, y) .

where ∗ denotes convolution in two dimensions. The magnitude of the first-stage output is computed in the
second stage as

m(x, y) = |ih(x, y)| = | h(x, y) ∗ i(x, y) |. (4)

A low-pass Gaussian postfilter gp(x, y) is applied to prefilter output m(x, y) yielding the postfiltered image

mp(x, y) = m(x, y) ∗ gp(x, y) , (5)

where

gp(x, y) =
1

2πσ2
p

e
− (x2+y2)

2σ2
p . (6)

Generally, we will refer to ih(x, y) as the prefiltered image, m(x, y) as the prefilter output, and mp(x, y) as
the postfilter output.

Post-filtering (5) was used by previous investigators to smooth out variations in m(x, y).(1,5,7) Further
discussion on this will be given in Part 4. The final step in Fig. 1 is to generate the segmented image is(x, y)
from the Gaussian-postfilter outputmp(x, y). To do this, we apply a threshold τ tomp(x, y); points above the
threshold are assigned to one texture, and points below to the other. More elaborate segmentation techniques
can be employed, but a simple threshold directly demonstrates the effectiveness of the new methods.

Given the system of Fig. 1, we now state the Gabor prefilter design problem. Consider the input image
i(x, y) to be composed of disjoint regions of two dissimilar textures, t1(x, y) and t2(x, y). Then the problem
is to find the Gabor function h(x, y) that provides the greatest discrimination between the two textures in
the filtered image mp(x, y).

Our approach to the problem is as follows. Using a statistical model for i(x, y), find the Gabor function
h(x, y) that maximizes the ratio of Gabor-prefilter output power for the two textures. Then, upon applying
a Gaussian postfilter, use the predicted statistics of the postfilter outputmp(x, y) to determine a threshold
that minimizes the image-segmentation error in the final segmented image is(x, y). Parts 3 and 4 outline
the analytical arguments and design procedures for our approach.

3. FILTER DESIGN ALGORITHM

In this section we propose an algorithm for designing the Gabor prefilter h(x, y) that is more efficient
than the previous approach.(5,7) The proposed method assumes that representative realizations of the two
textures are available and draws upon the autocorrelations for each of the two sample textures. The statistics
of m(x, y) and mp(x, y) are discussed in Part 4, along with the effects of Gaussian postfiltering.

We proceed with the development of the filter design algorithm by first establishing a method for si-
multaneously computing the output power of a large number of candidate Gabor prefilters for a particular
texture. This measure of output power is then used to select the best Gabor prefilter, thus establishing the
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prefilter parameters. The development proceeds for one texture, and the results are later generalized to both
textures.

Recall that the input image i(x, y) is composed of two textures, t1(x, y) and t2(x, y). We assume that the
given realizations of these two textures are samples from ergodic 2-D random processes. Denote the power
spectral densities of t1(x, y) and t2(x, y) by S1(u, v) and S2(u, v).

When t1(x, y) is filtered by a Gabor prefilter h(x, y) with fixed parameters (U, V, σg), the total output
power at ih(x, y) is

P1(U, V ) =

∞∫
−∞

∞∫
−∞

S1(u, v) |H(u, v)|2 dudv ,

or

P1(U, V ) =

∞∫
−∞

∞∫
−∞

S1(u, v) |G(u− U, v − V )|2 dudv . (7)

Equation (7) gives the total output power at ih(x, y) for a particular Gabor prefilter. It can be generalized,
so that P1(u, v) can be calculated efficiently for all Gabor prefilter center frequencies (U, V ) simultaneously.
To see this, consider a window w(x, y) as follows:

w(x, y) = g(x, y) ∗ g(x, y) =
1

2π(
√

2σg)2
e
− (x2+y2)

2(
√

2σg)2 , (8)

where g(x, y) is the Gaussian (1). Note that w(x, y) is completely determined by parameter σg. From (1,3),
the Fourier transform of w(x, y) is:

F {g(x, y) ∗ g(x, y)} = [G(u, v)]2 = e−4π2σ2
g(u

2+v2) ,

where F {} denotes the Fourier transform operator. We can now compute P1(u, v) for all frequencies (u, v)
by taking the Fourier transform of the windowed autocorrelation w(x, y)R1(x, y)

P1(u, v) = F { w(x, y)R1(x, y) } = [G(u, v)]2 ∗ S1(u, v) ,

or

P1(u, v) =

∞∫
−∞

∞∫
−∞

S1(α, β) |G(u− α, v − β)|2 dαdβ (9)

where we use the fact that [G(u, v)]2 = |G(u, v)|2. From Parseval’s theorem, P1(u, v) may be interpreted as
the total output power of ih(x, y) for a Gabor prefilter with center frequency (u, v) and parameter σg. This
can be easily seen by a comparison of (7) and (9). Relation (9) can be efficiently implemented in a discrete
form using the FFT. The discrete form then gives P1(u, v) at a discrete set of center frequencies (u, v) and
a particular σg.

When the foregoing analysis is applied to both textures, t1(x, y) and t2(x, y), it leads to the filter-design
algorithm summarized below:

1. Estimate the autocorrelations, R1(x, y) and R2(x, y), of the two textures of interest using the given
realizations of the textures, t1 and t2.

2. Form the window function w(x, y) in (8) for a given Gabor prefilter parameter σg.
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3. Compute P1(u, v) and P2(u, v) for the two textures using a discrete FFT implementation of (9).
4. Choose the center frequency that maximizes the ratio of P1(u, v) to P2(u, v) as follows:

(U, V ) = arg

 max
(u, v)

(
P1(u, v)

P2(u, v)

) (10)

5. Repeat steps 2 through 4 for all σg under consideration.
6. Select the Gabor prefilter, specified by (U, V, σg), that gives the best segmentation error performance,

based on criteria discussed in Part 4.

The above algorithm gives a Gabor prefilter that emphasizes texture t1 over t2 in the output ih; i.e.,
the average energy in the filtered output is greater for t1 than t2. The filter is optimal in the sense that
it maximizes the expected ratio of average output energy for the two Gabor prefiltered textures. Similarly
we could maximize the ratio P2(u, v)/P1(u, v), resulting in a filter that emphasizes t2 over t1. In practice,
we chose the the filter associated with the larger of the two maximum power ratios P1(u, v)/P2(u, v) or
P2(u, v)/P1(u, v).

The output power in (7) is equivalent to the second moment of the Gabor prefiltered output. Hence, (10)
may also be interpreted in a statistical sense as maximizing the ratio of the second moments of the filtered
textures. Dunn and Higgins have shown that m(x, y) in (4) has a Rician pdf for many textures.(5,7) The
total output power, because of its statistical interpretation as the second moment, establishes bounds on
the mean and variance of the Rician-distributed Gabor-prefilter output m(x, y). Thus, a large power ratio
should correspond to lower classification error, since this implies that the ratio of the average energy for the
two filtered textures will be larger. Later, in the results of Part 5, a large power ratio is shown to correspond
to a large contrast between the average intensities of the filtered textures. Using a Gabor prefilter with a
large ratio of P1(u, v)/P2(u, v) results in a filtered image where the region corresponding to texture t1 is
much brighter than the region corresponding to t2.

A significant benefit of the proposed filter-design algorithm is that it is far more efficient computation-
ally than the previously proposed optimal approach.(5,7) The computational complexity of new method is
primarily driven by the computation of P (u, v) in (9). First, R(x, y) is computed as a size 2Nx2N acyclic
autocorrelation using the operation F−1{|F{tz}|2} where tz is the zero-padded version of the size NxN
sample texture. Second, P (u, v) is calculated as F{ w(x, y)R1(x, y) } using an NxN window for w(x, y).
These two steps are implemented as two 2Nx2N FFT’s and one NxN FFT with a computational complexity
of O(9N2log2N).

The most direct comparison in computational complexity is with the work of Dunn and Higgins, since
this is the only other approach considering the design of a single filter to segment two textures.(5,7) The
computational complexity of the approach proposed by Dunn and Higgins is primarily driven by the need to
perform ≈ 200 2-dimensional Gaussian-windowed FFT’s (Fast Fourier Transforms) on each sample texture,
i.e. t1 and t2. This results in a computational complexity of O(200N2log2N) for size NxN sample texture
images. Thus, the new method is approximately 22 times less complex than the method of Dunn and Higgins.

4. ESTIMATION OF FILTER OUTPUT STATISTICS

The previous section presented an efficient algorithm for designing the Gabor prefilter h(x, y). This
section discusses how to estimate the statistics ofm(x, y) and mp(x, y), so that a threshold on mp(x, y) can
be set that minimizes the image-segmentation error. An algorithm is developed to estimate the pdf’s of the
Gabor-prefilter and Gaussian-postfilter outputs, m(x, y) and mp(x, y). Once the output distributions for
the two textures of interest are known, it is straightforward to calculate a threshold that minimizes image-
segmentation error. Although the Gabor-prefilter and Gaussian-postfilter output statistics could be directly
estimated from the filtered images, the new method presented below offers a new and efficient approach to the
single-filter multi-texture and multi-filter multi-texture Gabor filter design problem. These issues are briefly
discussed later, and some preliminary results using these new approaches have been recently presented.(20)
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We first discuss a signal model that provides a framework for estimating the pdf of the Gabor-prefilter
output m(x, y) from the autocorrelation of a texture, or more precisely from an expression of the form (9).
Dunn and Higgins have shown the prefilter output to be characterized well by a Rician distribution.(5,7,21)

For simplicity, we retain the 1-dimensional notation of Dunn and Higgins, and represent the Gabor prefiltered
output ih(x, y) as ih(x). Later we generalize the 1-dimensional results to the 2-dimensional case. A Gabor
prefiltered texture with random perturbations is shown to be modeled by(5,7)

ih(x) = [(A0 cos(θ) +X(x)) + j(A0 sin(θ) + Y (x))] ej2π(Ux),

where A0 is the magnitude of the sinusoidal component of the Gabor prefiltered image due to the unper-
turbed texture. X(x) and Y (x) are independent, zero-mean, Gaussian lowpass random processes due to the
perturbations in the texture. Rearranging:

ih(x) = A0 e
(j2πUx+θ) + (X(x) + jY (x)) ej2π(Ux). (11)

Hence, the Gabor prefiltered image is modeled as a complex exponential s(x, y) due to the first term in (11),
and bandpass noise n(x, y) due to the second term. Extending this to two dimensions, the model for the
Gabor prefiltered image becomes

ih(x, y) ≈ s(x, y) + n(x, y) = A e−j2π(Ux+V y) + n(x, y) (12)

The phase term θ is not included in (12) since phase information is not used in the proposed methods,
and the position of constituent textures in the input image is generally unknown.

The frequency domain representation of ih(x, y) consists of an impulse at the center frequency of the
complex exponential plus bandlimited noise shaped by the Gabor prefilterH(u, v). In (12) the Gabor prefilter
h(x, y) bandlimits the input i(x, y) such that the prefiltered image ih(x, y) essentially consists of a small
bandwidth around the center frequency (U, V ) of the prefilter. In practice, the Gabor prefilter often focuses
on a significant spectral peak of a texture. Thus, the output signal ih(x, y) in this small passband is modeled
as a single dominant complex exponential plus complex bandpass noise. Strongly periodic components of a
texture would tend to be represented by larger values ofA.

Given the model (12), it is well known that m(x, y), the magnitude of the complex signal ih(x, y), has a
Rician distribution p(m) when n(x, y) is Gaussian bandlimited noise; i.e.,

p(m) =
2m

N
e−(m

2+A2

N ) I0(
2mA

N
) (13)

where m ∈ m(x, y), A is the amplitude of the complex exponential, I0(·) is the modified Bessel function of the
first kind with zero order, and N is the total noise power.(5,7,21) The distribution is completely determined
by the values of A and N .

When A << N ( or A ≈ 0 ), p(m) approaches a Rayleigh distribution.(21) Hence, the Rician model in
(13) accommodates situations in which the output statistics follow a Rayleigh distribution. In the Rayleigh
case, the power spectrum of ih(x, y) is dispersed across the passband almost uniformly and does not have
a concentration (or peak) at any particular frequency within the passband. As it turns out, our results
indicate that the filter design algorithm tends to favor selecting h(x, y) such that the filtered version of
t1 in m(x, y) will be Rician with A 6≈ 0, while the corresponding filtered version of t2 in m(x, y) will be
approximately Rayleigh with A ≈ 0. This effect is a consequence of the maximum ratio in (10). The ratio is
commonly maximized at the frequency of a dominant sinusoidal component in one of the two textures. Since
it is unlikely that both textures will have a dominant sinusoid at the same frequency, the other prefiltered
texture tends to be Rayleigh distributed.

Equation (12) is used to estimate the output statistics of m(x, y) from P1(u, v). To do this, we first
observe that the Gabor prefiltered image ih(x, y) in (12) is the result of the bandpass filtering operation.
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Since the Gabor prefilter h(x, y), which is determined by (U, V, σg), passes spatial frequencies localized
around the center frequency (U, V ) and rejects energy at other frequencies, a locally equivalent model (in the
spatial-frequency plane) at the input of the Gabor prefilter is a complex exponential plus white noise, with
power spectral density S1(u, v):

S1(u, v) ≈ F { R1(x, y) }

≈ A2δ(u− U, v − V ) +
η

4
(14)

where the uniform power density η is used to model the spectral components at the Gabor prefilter input
which contribute to n(x, y) in (12). We emphasize that this model of the power spectrum of i(x, y) is only
valid within the approximate passband of the prefilter. When the input model (14) is applied to (9) of the
filter design algorithm, we get

P1(u, v) ≈ A2 e−4π2σ2
g[(u−U)2+(v−V )2] +

η

16πσ2
g

. (15)

In (15) the first term arises from the dominant sinusoid in i(x, y) that lies within the Gabor prefilter passband;
i.e., the δ(u− U, v − V ) term in (14). The second term arises from the remaining power in i(x, y) that lies
within the Gabor prefilter passband; i.e., the δ(u − U, v − V ) term in (14). This second term gives the
parameter N in (13):

N = η/(16πσ2
g). (16)

The Rician parameters A and N may be estimated from (15). Denote the power for texture t1 at Gabor
prefilter center frequency (U, V ) as P0. The half power point of P1(u, v) in the absence of noise occurs at a
frequency offset of ν =

√
ln(2)/(2πσg). Then,

P0 ≈ P1(U, V ) = A2 +N,

Pν ≈ P1(U ± ν, V ) = A2 e−4π2σ2
g [(
√
ln(2)/(2πσg))

2] +
η

16πσ2
g

=
A2

2
+N (17)

which gives relations for the Rician parameters:

A2 ≈ 2(P0 − Pν), N ≈ 2Pν − P0 (18)

A frequency offset of ν =
√
ln(2)/(2πσg) is used for illustration, other frequency offsets can be used in (17)

with slight modifications in (18). Good results have been obtained with frequency offsets in the range of
.094/σg < ν < .133/σg.

Given A and N , the mean µg and variance s2g of the prefilter output m(x, y) can be calculated from the
Rician pdf p(m) in (13).

Finally, we can estimate the output statistics ofmp(x, y) under varying degrees of Gaussian postfiltering.
From (5) and (6), the Gaussian postfiltering process can be considered as a spatial averaging of indepen-
dent samples of m(x, y). The mean µp and variance s2p of the Gaussian postfiltered output can then be
approximated as

µp = µg, s2p =
s2g σ

2
g

σ2
p

. (19)
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For small ratios of σ2
g/σ

2
p, the Gaussian postfiltered output pdf will become approximately Gaussian, due

to the central limit theorem. Therefore, for texture ti, the pdf pi(mp) of the Gaussian-postfilter output
mp(x, y) is approximated as

pi(mp) =
1√

2πs2pi

e
−

(mp−µpi)
2

2s2
pi

where µpi and s2pi are the mean and variance of the Gaussian-postfilter output for texture ti. The optimal
image-segmentation threshold τ is then selected by modeling the output density of is(x, y) as a bimodal
Gaussian distribution having equal a priori probabilities for the two textures; τ is selected such that

p1(τ) = p2(τ). (20)

Equation (20) is well known to be reducible to a quadratic in τ having a closed form solution.(22) In the
event of two distinct solutions, the solution between µ1 and µ2 is chosen.

The foregoing arguments provide new insight into the need for postfiltering. The effect of Gaussian post-
filtering is particularly pronounced as the ratio A/N becomes small. The Rician pdf approaches a Rayleigh
pdf with small ratios of A/N , and the Rayleigh pdf exhibits longer tails. The long tails on the Rayleigh
distribution lead to large image-segmentation errors when postfiltering is not employed. Hence, postfiltering
is particularly important for segmenting textures having no dominant sinusoid within the passband of the
Gabor prefilter. Furthermore, it is unlikely that a Gabor prefilter will pass dominant sinusoids for both
textures t1 and t2, and so at least one of the prefiltered textures is likely to have a Rayleigh distribution.
The inclusion of Gaussian postfiltering in the proposed methods enables a balanced treatment of Rician and
Rayleigh distributed outputs.

The method also provides insight to the tradeoffs of Gabor prefiltering, Gaussian postfiltering, and
spatial resolution. A given spatial resolution can be achieved by various combinations of Gabor prefilter
bandwidth and Gaussian postfilter bandwidth. For noise-like textures (A ≈ 0) with relatively flat power
spectral densities, the Gabor prefilter output statistics will have approximately Rayleigh statistics regardless
of the prefilter bandwidth set by σg. Also, the second moment (or power) of the output will be inversely
proportional to σ2

g as shown in (16). For small ratios of σg/σp, the spatial localization is approximately set by
the Gaussian postfilter. Using (16) and A = 0, the mean and standard deviation for a Rayleigh distributed
output is(21)

µg =

√
η

8σg
, sg =

√
1−

π

4

( √
η

4
√
πσg

)
.

where µg denotes the mean value of m(x, y) and sg denotes the standard deviation of m(x, y). Then, using
(19), the Gaussian-postfilter output’s mean µp and standard deviation sp are

µp ≈

√
η

8σg
, sp ≈

√
1−

π

4

( √
η

4
√
πσp

)
and

sp

µp
≈

2σg
σp

√
4− π

π
.
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Hence, for a fixed spatial resolution set by σp, it is advantageous to use a small value of σg (large Gabor
prefilter bandwidth) to reduce the ratio of the standard deviation to the mean of the Gaussian postfil-
tered output. This effectively results in increasingly narrow pdf’s for the Gaussian postfiltered output with
decreasing ratios of σg/σp for the case of noise-like textures with relatively flat local power spectral densities.

The following is a summary of the algorithm for estimating the output distributions for m(x, y) and
mp(x, y) and selecting a segmentation threshold:

1. Obtain P0 and Pν from P1(u, v) and P2(u, v), using (17) with (U, V ) from (10).
2. Calculate A and N for both textures, using (18).
3. For each texture, estimate the pdf of m(x, y) by substituting the estimates of A and N into (13).

Calculate the means and variances of m(x, y) for both textures from their pdf’s.
4. Pick σp and calculate Gaussian-postfilter output statistics usingσ2

g/σ
2
p in (19), with the Gabor-prefilter

output means and variances from step 3.
5. Set the image-segmentation threshold τ , using (20).
6. Repeat steps 4 and 5 for each σ2

p of interest.
7. Choose the best compromise between the image resolution (determined byσp) and image-segmentation

error (determined by σ2
g/σ

2
p ).

Note that the foregoing algorithm is not necessarily limited to the center-frequency (U, V ) chosen by the
frequency-selection algorithm. This observation that the statistics can be estimated at any frequency leads to
alternative Gabor filter design approaches that are the subject of ongoing research.(17,18) Thus, even though
it is apparent that the empirical distributions of the filtered textures could be used to directly establish the
segmentation threshold, we chose to employ the foregoing method to estimate output statistics since it leads
to useful approaches to the more difficult multi-filter multi-texture design problem. However, by choosing
a peak power point from (10), the frequency-selection algorithm tends to choose a center frequency that
should be well represented by the presumed model (14).

5. RESULTS

The new algorithms were tested on a range of Brodatz(23) and synthetic texture images. All images
used were 256x256 pixel 8-bit gray-scale images. The mean values of all textures were equalized so that
segmentation based on average gray scale was not possible. In each example a single value of σg and σp are
used to illustrate the effectiveness of the selected Gabor prefilter center-frequency and the output statistical
estimates. For guidelines on selecting values for σg, see Dunn et al.(6) In the following examples, σp was
chosen to be twice as large as σg so that the effect of Gaussian postfiltering was clearly visible.

Figure 2 presents results for a pair of Brodatz textures using the Gabor prefilter designed with the new
algorithm. The 256x256 input image i(x, y) in Fig. 2(a) consists of a central d77 “cotton canvas” texture
region superimposed on a background of the d16 “herringbone weave” texture. The prefilter outputm(x, y)
is shown in Fig. 2(b). The measured histograms of m(x, y) are shown in Fig. 2(c) as solid lines, and the
predicted Rician pdf’s using (13) are shown as dashed lines. The curves that peak at lower output amplitude
correspond to the dark outer border (prefiltered d16) of Fig. 2(b), and the curves which peak at the larger
amplitude correspond to the bright central region (prefiltered d77) of Fig. 2(b). The measured output
statistics are seen to correspond well with the predicted Rician statistics.

The Gaussian-postfilter output mp, where σg/σp = 0.5, is shown in Fig. 2(d). The predicted Gaussian
pdf (dashed lines) and measured output histograms (solid lines) are presented in Fig. 2(e) for the Gaussian
postfiltered image. The segmented image is(x, y) is shown in Fig. 2(f) for the postfiltered output using the
optimal threshold. The Gaussian postfiltering reduces the tails of the measured histograms, as is evident
from comparing Fig. 2(c) and 2(e). A large amount of overlap is seen in the Gabor prefilter histograms of
Fig. 2(c). It is apparent that a segmentation without postfiltering will result in a large segmentation error,
and this is confirmed in Fig. 2(g). The histogram overlap is virtually eliminated by Gaussian postfiltering.
This results in low error for the segmented image of Fig. 2(f). Finally, the results of a segmentation using
the method of Dunn and Higgins are shown in Fig. 2(h) for comparison.(5,7) The same σp and σg were used,
but a different center-frequency (U, V ) = (0, .195) was selected. Although the filter center-frequencies differ,
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2: Results for optimal filter: (a) Input composite image: d16 “herringbone weave” (border)
d77 “cotton canvas” (center). (b) Prefilter magnitudem(x, y), (U, V ) = (−.035,−.047) cycles/pixel,
σg = 5. (c) Histogram of predicted (dashed) and actual (solid) m(x, y). (d) Postfiltered output
mp(x, y), σp = 10. (e) Histogram of predicted (dashed) and actual (solid) mp(x, y). (f) Seg-
mentation of postfiltered output, threshold =10. (g) Segmentation of prefiltered output, thresh-
old=11. (h) Segmentation of postfiltered output using previous algorithm,(5, 7) σg = 5, σp = 10,
(U, V ) = (0, .195).

both methods are seen to generate effective filters for segmentation.

Fig. 3 presents results for a pair of noise-like textures. The two textures are comprised of essentially
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(a) (b) (c)

(d) (e) (f)

Figure 3: Results for optimal filter: (a) Input composite image: uniform noise (border) and uni-
form noise with enhanced diagonal energy (center). (b) Prefilter magnitude m(x, y), (U, V ) =
(−.16,−.16) cycles/pixel, σg = 5. (c) Histogram of predicted (dashed) and actual (solid) m(x, y).
(d) Postfiltered output, σp = 10. (e) Histogram of predicted (dashed) and actual (solid) mp(x, y).
(f) Segmentation of postfiltered output, threshold =5.3.

flat power spectral densities, except that the central texture of Fig. 3(a) has increased power density along
the diagonal direction. The power density is increased at a frequencies of (−.16,−.16) and (+.16,+.16)
cycles/pixel over a passband of .08 cycles per pixel. The histograms of Fig. 3(c) have a Rayleigh appearance,
as expected for the envelope of bandpass noise. By construction, these two synthetic textures have no
dominant spatial-frequency components. Comparison of the histogram overlaps in Fig. 3(c) and 3(e) reveals
the importance of Gaussian postfiltering. The long tails of the Rayleigh pdf associated with noise-like
textures, as Fig. 3(c) demonstrates, leads to a large segmentation error in the absence of postfiltering.
Although the histograms of the Gaussian postfiltered output show great improvement over the Gabor-
prefilter output histograms, the borders of the segmentation in Fig. 3(f) appear worse than the results of
Fig. 2. This error is a consequence of the low ratio of average powers, per (10), combined with the Rayleigh
prefilter output pdf’s. Comparing Figs. 2(c) and 3(c), we can make two observations. First, the means for
Fig. 2 are 5.6 and 20.4 with a ratio of 3.7, while the means for Fig. 3 are 3.2 and 9.9 with a ratio of 3.1.
Second, the lower and upper distributions in Fig. 2(c) have A/N = 0 and A/N = .12, respectively, while in
Fig. 3(c) A/N = 0 for both the lower and upper distributions. Thus, the segmentation in Fig. 2 is expected
to be better than Fig. 3, because the constituent textures have a larger ratio of output means and a larger
ratio of A/N in the upper pdf.

Figure 4 presents results for another Brodatz texture pair. The input image in Fig. 4(a) consists of
texture d77 “cotton canvas” imposed on a background of d9 “grass.” The Gabor-prefilter output in Fig. 4(b)
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(a) (b) (c)

(d) (e) (f)

Figure 4: Results for optimal filter: (a) Input composite image: d9 “grass” (border) and d77
“cotton canvas” (center). (b) Prefilter magnitude m(x, y), (U, V ) = (−.035,−.055) cycles/pixel,
σg = 8. (c) Histogram of predicted (dashed) and actual (solid) m(x, y). (d) Postfiltered output,
σp = 16. (e) Histogram of predicted (dashed) and actual (solid) mp(x, y). (f) Segmentation of
postfiltered output, threshold =9.9.

is seen to emphasize the central texture while suppressing the outer texture (darker response). The mottled
appearance of the response to the grass texture is characteristic of a Rayleigh distribution, and is also
evidenced in the apparent Rayleigh shape of the corresponding histogram (mean≈ 5) in Fig. 4(c). Rician
distributions approach a Gaussian distribution for A >> N , and the histogram of the cotton canvas appears
more Gaussian than Rayleigh. In Fig. 4(c) A/N = .38 for the upper pdf and A/N = .02 for the lower
pdf. The Gaussian postfiltered image and associated histograms are in Figs. 4(d) and 4(e). Again, the
postfiltering is seen to greatly reduce the tails of the histograms. The segmented image in Fig. 4(f) is
generated from the Gaussian postfiltered image in Fig. 4(d) using the threshold calculated in (20) from
the predicted statistics. Note that σg and σp are larger in this example than for Figs. 2 and 3, resulting in
increased spatial smoothing and increased frequency selectivity at the expense of reduced spatial localization.

Section 3 pointed out that the filter-design algorithm is much more efficient than the previously proposed
method.(5,7) It is important, however, to determine how the filters designed by the two methods compare.
Figure 5 gives such a comparison.

P1(u, v)/P2(u, v) is shown in Fig. 5 for the “d16-d77” example of Fig. 2. The intensity in Fig. 5 is
logarithmically proportional to P1(u, v)/P2(u, v) with (u, v) = (0, 0) at the center and the positive u and
v axes labeled. The black box surrounds the point at which P1(u, v)/P2(u, v) is maximum, and the white
box surrounds the minimum. Black “pluses” are the most highly rated frequencies selected by the previous
method.(5,7) Although the selected frequencies in this example are not identical, the tendency of both
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Figure 5: P1(u, v)/P2(u, v) for the example of Fig. 2, d16 “herringbone weave” (border) d77 “cotton
canvas” (center). The intensity is logarithmically proportional to P1(u, v)/P2(u, v), the center
corresponds to (u, v) = (0, 0), and the lower right corner corresponds to positive u and v. The
black and white boxes surround the maximum and minimum P1(u, v)/P2(u, v) respectively, which
correspond to the center frequencies selected by the proposed filter-design algorithm. The +’s
correspond to frequencies selected by the previous algorithm.(5,7)

methods to select peaks in P1(u, v)/P2(u, v) is readily apparent. In other cases, the method of Dunn and
Higgins is seen to select minima in P1(u, v)/P2(u, v) (equivalent to maxima in P2(u, v)/P1(u, v)) such as that
indicated by the white box.

The proposed method’s improvement in computational complexity is obtained at the cost of some loss in
the information used to set the filter center frequency. The proposed method selects the Gabor prefilter center
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frequency based on a measure of total power (knowledge of the second moment of the output distribution),
whereas the previous method(5,7) completely characterizes the distribution with estimates ofA andN (which
determine the pdf). Thus, the two algorithms do not necessarily select the same center frequencies because
differences in P1(u, v)/P2(u, v) can be offset by differences inA2/N . However, both algorithms are seen to
generate effective filters.

In the previous examples, the Gabor-prefilter output was represented well by the Rician pdf, and the
Gaussian-postfilter output was represented well by the Gaussian pdf. These results are, however, dependent
on the choice of σg and σp. At one extreme, with large σg, the prefilter output consists of a single spectral
component from the FFT of each input texture. This single sinusoid with its constant envelope results
in a zero-variance output pdf, regardless of σp. At the other extreme, with small σg, the Gabor-prefilter
output approaches the original input texture. As the prefilter output statistics approach the statistics of
the input image, they are not likely to be well modeled as a Rician pdf. In this latter extreme, however, a
Gaussian postfilter may provide sufficient smoothing such that the postfilter output approaches a Gaussian
distribution.

The input textures also affect the overall segmentation performance. The previous examples include a
variety of natural and noise-like textures which have some degree of randomness. Uniform textures, on the
other hand, do not have this random component, and can be represented as a Fourier series expansion.(6)

Prefiltered uniform textures often exhibit low variances and large ratios of P1(u, v)/P2(u, v). In such situa-
tions, the ratio of the mean Gabor-prefilter output to the segmentation threshold can become large (≈ 10
). This leads to segmentation error at texture boundaries when the filtered image makes the transition from
the region with the large mean value to the region with the smaller mean value. Even so, the proposed
method produces effective filter designs for uniform textures in most situations.

6. CONCLUSION

The new Gabor prefilter design method is optimal in the sense that the resulting prefilter maximizes
the ratio of expected average output energy for the two textures. This results in large differences in the
“brightness” of regions composed of different textures in the Gabor prefiltered image. Furthermore, the
Gabor prefilter design method has significant computational advantages over previous approaches. We
also described an algorithm for estimating output statistics and for setting segmentation thresholds. The
estimation of Gabor prefilter and Gaussian-postfilter output statistics is demonstrated in several examples
for natural and synthetic textures. Effective segmentation thresholds and image segmentations are generated
using the Gaussian statistical model for Gaussian postfiltered outputs. In addition, the algorithms provide
new insight into the need for postfiltering and the treatment of noise-like textures.

Remaining issues in the design of Gabor filters for texture segmentation include the design of a single
filter to segment multiple ( > 2 ) textures and the design of multiple filters to segment multiple textures.
The present work provides several steps toward these two objectives. First, the method of estimating output
statistics from the windowed autocorrelation (or power spectrum) of the sample textures is computationally
efficient. This computational efficiency becomes increasingly important as the size of images, number of
Gabor prefilters, number of Gaussian postfilters, and number of textures increases. Second, the method
provides insight into the tradeoffs of Gabor prefiltering, Gaussian postfiltering, and spatial resolution. Finally,
new work is being done on a hybrid method that combines the method for prefilter center-frequency selection
with the method for output pdf estimation. Preliminary results on this hybrid method for the single-filter
multi-texture design problem confirm the utility of the foregoing methods in developing new approaches to
the single-filter multi-texture and multi-filter multi-texture Gabor filter design problem.(20)

The previous discussion has focused on the design of Gabor filters. The methods, however, should be
applicable to other types of filters. This may be accomplished by replacing the kernel G(u, v) in (9) by
a different kernel K(u, v). The only caveat is that necessary properties of G(u, v) used in the foregoing
derivations set restrictions on K(u, v). In particular, K(u, v) should satisfy [K(u, v)]2 = |K(u, v)|2 as used
in (9), and K(u, v) should be non-negative to assure that the spectral estimate given by (9) is non-negative.
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